Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.364
Filtrar
1.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
2.
Front Immunol ; 15: 1376907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571957

RESUMO

Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.


Assuntos
Cestoides , Infecções por Cestoides , Melanoma , Mesocestoides , Taenia , Camundongos , Animais , Mesocestoides/fisiologia , Melanoma/complicações , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Infecções por Cestoides/complicações , Infecções por Cestoides/patologia
3.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611714

RESUMO

Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.


Assuntos
Cádmio , Fator 2 Relacionado a NF-E2 , Pirazinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos ICR , Cádmio/toxicidade , Estresse Oxidativo , Fígado , RNA Mensageiro
4.
Birth Defects Res ; 116(4): e2337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613401

RESUMO

BACKGROUND: Since strain names and breeding facilities of ICR mice used in 37 reproductive toxicity studies have changed from 1990 to 2022 in our laboratory, biological and environmental factors that affect reproductive parameters were investigated in control mice to examine the validity of the background data. METHODS: Litter size and sex ratio were measured at birth [postnatal day (PND) 0], while offspring body weight was measured on PND 0 and 21 during the lactation. The relationships between biological and environmental factors and reproductive parameters were assessed with multiple regression analysis using stepwise regression as an explanatory variable selection strategy. The biological factors of litter size at birth, secondary sex ratio (male%), body weight (g) at birth and strain name, and environmental factors of facilities (room), temperature/humidity, and bedding materials were used as explanatory variables, and reproductive parameters of litter size at birth, secondary sex ratio (male%), body weight (g) at birth, and survival index (%) of offspring at PND 21 were used as response variables. RESULTS: No significant effects were indicated in litter size and sex ratio (male %) with any biological and environmental factors. Male and female offspring weights were significantly affected by strain names. No significant effects were indicated in the survival index (%) at PND 21 in both sexes with any biological and environmental factors. CONCLUSIONS: Litter size and sex ratio in this report are sufficient as background data throughout the period because no significant variables of biological and environmental factors affected litter size and gender composition.


Assuntos
Lactação , Reprodução , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos ICR , Peso ao Nascer , Peso Corporal
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 507-514, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597442

RESUMO

OBJECTIVE: To investigate the protective effects of HTD4010 against lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) in mice and explore the mechanisms mediating its effect. METHODS: Forty-five male ICR mice were randomized equally into control group, LPS (10 mg/kg) group, and LPS+HTD4010 group (in which 2.5 mg/kg HTD4010 was injected subcutaneously at 1 h and 6 h after LPS injection). Cardiac function of the mice was evaluated by ultrasound, and pathological changes in the myocardial tissues were observed with HE staining. The levels of IL-6 and TNF-α in serum and myocardial tissues were detected using ELISA, and apoptosis of the cardiomyocytes was detected with TUNEL staining. The expression levels of the key proteins associated with apoptosis, autophagy and the AMPK/mTOR pathway in the myocardial tissues were detected using Western blotting. The ultrastructural changes of cardiac myocardial mitochondria was observed with transmission electron microscopy. RESULTS: LPS exposure caused severe myocardial damage in mice, characterized by myocardial fiber rupture, structural disorder, inflammatory cell infiltration, and mitochondrial damage. The LPS-treated mice exhibited significantly decreased cardiac LVEF and FS values, elevated IL-6 and TNF-αlevels in serum and myocardial tissue, and an increased myocardial cell apoptosis rate with enhanced expressions of Bax, p-62 and p-mTOR and lowered expressions of Bcl-2, LC3 II/I, Beclin-1 and p-AMPK (P < 0.05 or 0.01). Treatment of the septic mice with HTD4010 significantly alleviated myocardial damage, increased LVEF and FS values, reduced IL-6 and TNF-α levels in serum and myocardial tissue, decreased cardiomyocyte apoptosis, lowered myocardial expressions of Bax, p-62 and p-mTOR, and increased Bcl-2, LC3 II/I, Beclin-1 and p-AMPK expressions (P < 0.05 or 0.01). CONCLUSION: HTD4010 can attenuate myocardial injury in SCM mice possibly by promoting autophagy via modulating the AMPK/mTOR signaling pathway.


Assuntos
Cardiomiopatias , Traumatismos Cardíacos , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Beclina-1/metabolismo , Lipopolissacarídeos/efeitos adversos , Interleucina-6/metabolismo , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos ICR , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Miócitos Cardíacos , Traumatismos Cardíacos/metabolismo , Apoptose , Autofagia
6.
J Agric Food Chem ; 72(12): 6143-6154, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475697

RESUMO

Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.


Assuntos
Fluoretos , Piroptose , Animais , Camundongos , Masculino , Fluoretos/farmacologia , Interleucina-17 , Camundongos Endogâmicos ICR , Sêmen/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
Sci Rep ; 14(1): 5440, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443482

RESUMO

This study aims to evaluate the safety of MK-7 produced by fermentation process using a Bacillus subtilis var. natto strain for human ingestion via acute oral toxicity, repeated dose 90-day oral toxicity, 28-day recovery test, and genotoxicity tests. The acute oral toxicity test results indicated that all subjects survived at the dose of 5000 mg/kg with no toxic effects. For the repeated dose 90-day oral toxicity test, MK-7 was administered to rats at 500, 1500, and 4500 mg/kg for 90 d. No abnormal findings were detected in clinical observations or in clinical pathological and histopathological examinations. The no-observed-adverse-effect level(NOAEL) was determined to be 4500 mg/kg/d, the maximum dose tested. For the evaluation of genotoxicity, reverse mutation, chromosomal aberration, and micronucleus tests were performed. In the reversion mutation test, vitamin K2 did not induce reversion in bacterial strains, and no chromosomal abnormality was observed in the chromosomal abnormality test using Chinese hamster lung cells. In the micronucleus test, micronuclei were not induced using ICR mouse bone marrow cells. All the toxicity test results suggest that vitamin K2 produced by fermentation processes using Bacillus subtilis var. natto induced no toxicological changes under the experimental conditions.


Assuntos
Bacillus subtilis , Aberrações Cromossômicas , Humanos , Camundongos , Cricetinae , Animais , Ratos , Camundongos Endogâmicos ICR , Vitamina K 2/toxicidade , Mutação , Cricetulus
8.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460408

RESUMO

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Assuntos
Toxinas Marinhas , Microcistinas , Sirtuínas , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Proliferação de Células , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidade , Sêmen , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
9.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513062

RESUMO

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


Assuntos
Treinamento Intervalado de Alta Intensidade , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Animais , Camundongos , Lactatos , Camundongos Endogâmicos ICR , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Piruvatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo
10.
J Ethnopharmacol ; 328: 118104, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38531431

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Galphimia glauca is a medicinal plant that treats inflammatory and anti-rheumatic problems. Its anti-inflammatory capacity has been reported pharmacologically, attributed to the triterpenes G-A and G-E. AIM: The objective of the present work was to measure the anti-inflammatory and immunomodulatory effect of the methanolic extract (GgMeOH) of Galphimia glauca and the isolated galphimines G-A and G-E, first in an acute test of plantar edema with carrageenan, and later in the model of experimental-induced arthritis with CFA. The effect was measured by quantifying joint inflammation, the concentration of pro- (TNF-α, IL-6, IL-17) and anti-inflammatory (IL-10, and IL-4) cytokines, and the ADA enzyme in joints, kidneys, and spleen from mice with experimental arthritis. METHOD: The extract and the active triterpenes were obtained according to established methods using different chromatographic techniques. Female ICR strain mice were subjected to intraplantar administration with carrageenan and treated with different doses of GgMeOH, G-A, and G-E; edema was monitored at different times. Subsequently, the concentration of TNF-a and IL-10 in the spleen and swollen paw was quantified. Meloxicam (MEL) was used as an anti-inflammatory control drug. The most effective doses of each treatment were analyzed using a complete Freunds adjuvant (CFA)-induced experimental arthritis model. Joint inflammation was followed throughout the experiment. Ultimately, the concentration of inflammation markers, oxidant stress, and ADA activity was quantified. In this experimental stage, methotrexate (MTX) was used as an antiarthritic drug. RESULTS: Treatments derived from G. glauca, GgMeOH (DE50 = 158 mg/kg), G-A (DE50 = 2 mg/kg), and G-E (DE50 = 1.5 mg/kg) caused an anti-inflammatory effect in the plantar edema test with carrageenan. In the CFA model, joint inflammation decreased with all natural treatments; GgMeOH and G-A inhibited the ADA enzyme in all organs analyzed (joints, serum, spleen, left and right kidneys), while G-E inhibited the enzyme in joints, serum, and left kidney. CFA caused an increase in the weight index of the organs, an effect that was counteracted by the administration of G. glauca treatments, which also modulate the response to the cytokines analyzed in the different organs (IL-4, IL-10, IL-17, IL-6, and TNF- α). CONCLUSION: It is shown, for the first time, that the GgMeOH extract and the triterpenes G-A and G-E of Galphimia glauca have an anti-arthritic effect (anti-inflammatory, immunomodulatory, antioxidant, and ADA inhibitor), using an experimental arthritis model with CFA. Therefore, knowledge of the plant as a possible therapeutic agent for this rheumatic condition is expanding.


Assuntos
Artrite Experimental , Artrite , Galphimia , Triterpenos , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Carragenina , Interleucina-10 , Galphimia/química , Interleucina-17 , Interleucina-6 , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Interleucina-4 , Camundongos Endogâmicos ICR , Anti-Inflamatórios/efeitos adversos , Citocinas , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa , Artrite/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico
11.
Food Chem Toxicol ; 187: 114622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531469

RESUMO

Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.


Assuntos
Agaricales , Doença Hepática Induzida por Substâncias e Drogas , Intoxicação Alimentar por Cogumelos , Masculino , Camundongos , Animais , Alfa-Amanitina/toxicidade , Camundongos Endogâmicos ICR , RNA Polimerase II/genética , Rim , Inflamação , Perfilação da Expressão Gênica , RNA Mensageiro
12.
Food Chem Toxicol ; 187: 114624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556155

RESUMO

Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-µ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Masculino , Animais , Diclofenaco/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos ICR , Fígado/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Glutationa/metabolismo , Estresse Oxidativo , Jejum , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
13.
J Proteome Res ; 23(4): 1272-1284, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38470452

RESUMO

Gestational diabetes mellitus (GDM) with intrauterine hyperglycemia induces a series of changes in the placenta, which have adverse effects on both the mother and the fetus. The aim of this study was to investigate the changes in the placenta in GDM and its gender differences. In this study, we established an intrauterine hyperglycemia model using ICR mice. We collected placental specimens from mice before birth for histological observation, along with tandem mass tag (TMT)-labeled proteomic analysis, which was stratified by sex. When the analysis was not segregated by sex, the GDM group showed 208 upregulated and 225 downregulated proteins in the placenta, primarily within the extracellular matrix and mitochondria. Altered biological processes included cholesterol metabolism and oxidative stress responses. After stratification by sex, the male subgroup showed a heightened tendency for immune-related pathway alterations, whereas the female subgroup manifested changes in branched-chain amino acid metabolism. Our study suggests that the observed sex differences in placental protein expression may explain the differential impact of GDM on offspring.


Assuntos
Diabetes Gestacional , Hiperglicemia , Humanos , Gravidez , Feminino , Masculino , Camundongos , Animais , Placenta/metabolismo , Proteômica , Camundongos Endogâmicos ICR , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Hiperglicemia/genética
14.
J Toxicol Environ Health A ; 87(9): 371-380, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440899

RESUMO

Exposure to microplastics may be associated with damage of immune system. Polypropylene microplastics (PP-MPs) with a wide range of beneficial applications have not been extensively studied with respect to the immune system. The aim of this investigation is to examine the influence of two different sizes of PP-MPs (5.2 and 23.9 µm diameter) on immune system components in ICR mice. PP-MPs were administered orally to female and male mice at 0 (corn oil vehicle), 500, 1000, or 2000 mg/kg/d for single and daily for 4-week repeated toxicity test, respectively. No significant differences were observed in number of thymic CD4+, CD8+, CD4+CD8+ T lymphocytes, splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-γ to interleukin-4 in culture supernatants from activated splenocytes ex vivo (48 hr) was lower in females which were repeatedly administered with PP-MPs compared to vehicle irrespective of PP-MPs size and dose. In contrast, the opposite trend was observed in males. Production of tumor necrosis factor-α was upregulated in females that were repeatedly exposed to PP-MPs. The serum IgG2a/IgG1 ratio was lowered in female receiving large-size PP-MPs. Data suggest that immune disturbances resulting in predominant type-2 helper T cell reactivity may occur in mice, especially in females, when repeatedly exposed to PP-MPs. Further investigations with longer exposure periods are necessary to determine the immunotoxicities attributed to PP-MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos ICR , Plásticos , Polipropilenos/toxicidade , Baço
15.
Int Immunopharmacol ; 130: 111772, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432148

RESUMO

Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.


Assuntos
Benzoatos , NF-kappa B , Complicações Cognitivas Pós-Operatórias , Receptor alfa de Ácido Retinoico , Tetra-Hidronaftalenos , Animais , Camundongos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Receptor alfa de Ácido Retinoico/agonistas , Transdução de Sinais , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Tretinoína/farmacologia
16.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546211

RESUMO

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Assuntos
Doenças Transmissíveis , Vírus da Dengue , Dengue , Piperidinas , Viroses , Animais , Camundongos , Vírus da Dengue/fisiologia , Camundongos Endogâmicos ICR , Endopeptidases/farmacologia , Dengue/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química
17.
Parasites Hosts Dis ; 62(1): 42-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443769

RESUMO

Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Camundongos Endogâmicos ICR , Plasmodium berghei , Plasmodium falciparum , Cloroquina/farmacologia , Morfolinas , Amidas/farmacologia , Modelos Animais de Doenças
18.
Eur Rev Med Pharmacol Sci ; 28(3): 949-958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375700

RESUMO

OBJECTIVE: Wound repair dysfunction is becoming a major public health issue worldwide. Yes-associated protein (YAP) has previously been reported to be closely related to wound healing, while how YAP accelerates wound healing via regulating autophagy needs to be further probed. MATERIALS AND METHODS: ICR male mice were involved in two independent animal experiments; the mice were randomly allocated into control, autophagy inhibitor (3-MA) (injection), and 3-MA (drip) group or control, si-NC, si-YAP group (8 mice for each). Full-thickness excisional wounds (8 mm) in mice were created by punch to construct an in vivo wound model to observe the effects of autophagy inhibitor (3-MA) (by injection and drip) and si-YAP by electrotransfection. RESULTS: Firstly, we found that the autophagy inhibitor (3-MA) accelerated wound closure in vivo. Loss-of-function experiments subsequently revealed that YAP knockdown led to increased proliferation and migration of fibroblasts as well as reduced autophagy, resulting in accelerated wound healing. In addition, our results revealed that YAP could positively regulate Engrailed-1 (En1) expression in fibroblasts. En1 knockdown also promoted the proliferation and migration of fibroblasts, meanwhile resulting in increased mammalian target of rapamycin (mTOR) levels and reduced autophagy in fibroblasts. CONCLUSIONS: YAP knockdown repressed autophagy in fibroblasts to accelerate wound closure by regulating the En1/mTOR axis.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas de Sinalização YAP , Animais , Masculino , Camundongos , Autofagia , Proliferação de Células , Fibroblastos/metabolismo , Camundongos Endogâmicos ICR , Serina-Treonina Quinases TOR/metabolismo , Cicatrização , Proteínas de Sinalização YAP/genética
19.
Food Chem Toxicol ; 186: 114522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373586

RESUMO

Ginsenoside Rb1 (Gs-Rb1) is among the most significant effective pharmacological components in ginseng. 3-monochloropropane-1,2-diol (3-MCPD), a chloropropanol-like contaminant, is produced in the production of refined oils and thermal processing of food. Pyroptosis is a type of programmed cell death triggered by inflammasomes. Excessive pyroptosis causes kidney injury and inflammation. Previous studies have revealed that 3-MCPD induced pyroptosis in mice and NRK-52E cells. In the present study, we find that Gs-Rb1 attenuates 3-MCPD-induced renal cell pyroptosis by assaying GSDMD-N, caspase-1, IL-18, and IL-1ß in mice and NRK-52E cells. In further mechanistic studies, we show that Gs-Rb1 removes damaged mitochondria via mitophagy and reduces intracellular reactive oxygen species (ROS) generation, therefore alleviating 3-MCPD-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) activation and pyroptosis. The above results are further validated by the addition of autophagy inhibitor Chloroquine (CQ) and mitophagy inhibitor Cyclosporin A (CsA). Afterward, we explore how Gs-Rb1 activated mitophagy in vitro. We determine that Gs-Rb1 enhances the protein expression and nuclear translocation of Transcription factor EB (TFEB). However, silencing of the TFEB gene by small interfering RNA technology reverses the role of Gs-Rb1 in activating mitophagy. Therefore, we conclude that 3-MCPD damages mitochondria and leads to ROS accumulation, which causes NLRP3 activation and pyroptosis in ICR mice and NRK-52E cells, while Gs-Rb1 mitigates this phenomenon via the TFEB-mitophagy pathway. Our findings may provide new insights for understanding the molecular mechanisms by which Gs-Rb1 mitigates renal injury.


Assuntos
Ginsenosídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , alfa-Cloridrina , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , alfa-Cloridrina/farmacologia , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos ICR , Inflamassomos , Rim/metabolismo
20.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339001

RESUMO

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Assuntos
Desoxirribonuclease I , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Raios Ultravioleta , Animais , Masculino , Camundongos , Calcimicina/farmacologia , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/efeitos da radiação , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA